If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2+40v+38=0
a = 2; b = 40; c = +38;
Δ = b2-4ac
Δ = 402-4·2·38
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-36}{2*2}=\frac{-76}{4} =-19 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+36}{2*2}=\frac{-4}{4} =-1 $
| 5(x+5)=3(x+10) | | (x-1)^(2)+3=52 | | 7/2x+5/8=-5/4 | | 5(x+1)–(2x–3)=53 | | -6b-5-3b=15 | | 2x+3x+2+2=29 | | 10x+40=8x+40+120 | | H(t)=-t⁴+6t³-9t²+4t | | 13m+11=8m+28 | | 525=0.86j=213+1.25j | | 8m-29=25 | | 2x-9-5x-1=M | | 5x+25=3x+120 | | 28=4(5-2x | | 48=70+0.40x | | 22-3x=17 | | 48=100-0.5x | | 5x+2x+3+4=49 | | -2x^2+3=-125 | | 2(x+4)=96 | | (4y+12)/5=-28 | | t+1/4=2/712 | | 5/3=q+74/q | | 4x+2x+3+6=39 | | 6x-37=-175 | | -5y-23=-8 | | 5/3=(x+74)/x | | v=4/3*3.14(10)3 | | 5/3=(q+74)/q | | -3(x-5)=-3x+5 | | 5h-2=16 | | (2)10x+5=8x+22 |